Physics informed neural networks for triple deck
نویسندگان
چکیده
Purpose This paper aims to introduce physics-informed neural networks (PINN) applied the two-dimensional steady-state laminar Navier–Stokes equations over a flat plate with roughness elements and specified local heating. The method bridges gap between asymptotics theory three-dimensional turbulent flow analyses, characterized by high costs in analysis setups prohibitive computing times. results indicate possibility of using surface heating or wavy control incoming field. Design/methodology/approach understanding mechanism is normally caused unsteady interactions aircraft structure flows as well some studies have shown, can significantly influence fluid dynamics inducing perturbations velocity profile. Findings description boundary-layer flow, based upon triple-deck structure, shows how generate an interaction inviscid region viscous near plate. Originality/value To best authors’ knowledge, presented approach especially original relation innovative concept PINN solver asymptotic viscous–inviscid boundary layer interaction.
منابع مشابه
Deep Jointly-Informed Neural Networks
In this work a novel, automated process for determining an appropriate deep neural network architecture and weight initialization based on decision trees is presented. The method maps a collection of decision trees trained on the data into a collection of initialized neural networks, with the structure of the network determined by the structure of the tree. These models, referred to as “deep jo...
متن کاملPhysics of Neural Networks
The material basis of our thinking, intelligence and creativity are 1013-1014 nerve cells (neurons) which in our brain are densely packed into a grey sub stance weighing about 1.5 kg. Each neuron has — like the root of a tree — highly branched dendrites that collect information from about 10000 other nerve cells. This huge network, which on a microscopic scale looks rather homogeneous and diso...
متن کاملComputational physics: Neural networks
2 Networks of binary neurons 5 2.1 Neural information processing is noisy . . . . . . . . . . . . . 5 2.2 Stochastic binary neurons and networks . . . . . . . . . . . . . 11 2.2.1 Parallel dynamics: Little model . . . . . . . . . . . . . 13 2.2.2 Sequential dynamics . . . . . . . . . . . . . . . . . . . 13 2.3 Some properties of Markov processes . . . . . . . . . . . . . . 14 2.3.1 Eigenvalue s...
متن کاملNeural Networks and Qualitative Physics
mains of artificial intelligence: neural networks and qualitative physics. The rapid advances in these two areas have left unanswered several mathematical questions that should motivate and challenge mathematicians. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued ana...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aircraft Engineering and Aerospace Technology
سال: 2022
ISSN: ['1748-8842', '1758-4213']
DOI: https://doi.org/10.1108/aeat-10-2021-0309